Protein expression from unintegrated HIV-1 DNA introduces bias in primary in vitro post-integration latency models

نویسندگان

  • Pawel Bonczkowski
  • Marie-Angélique De Scheerder
  • Eva Malatinkova
  • Alexandra Borch
  • Zora Melkova
  • Renate Koenig
  • Ward De Spiegelaere
  • Linos Vandekerckhove
چکیده

To understand the persistence of latently HIV-1 infected cells in virally suppressed infected patients, a number of in vitro models of HIV latency have been developed. In an attempt to mimic the in vivo situation as closely as possible, several models use primary cells and replication-competent viruses in combination with antiretroviral compounds to prevent ongoing replication. Latency is subsequently measured by HIV RNA and/or protein production after cellular activation. To discriminate between pre- and post-integration latency, integrase inhibitors are routinely used, preventing novel integrations upon cellular activation. Here, we show that this choice of antiretrovirals may still cause a bias of pre-integration latency in these models, as unintegrated HIV DNA can form and directly contribute to the levels of HIV RNA and protein production. We further show that the addition of reverse transcriptase inhibitors effectively suppresses the levels of episomal HIV DNA (as measured by 2-LTR circles) and decreases the levels of HIV transcription. Consequently, we show that latency levels described in models that only use integrase inhibitors may be overestimated. The inclusion of additional control conditions, such as 2-LTR quantification and the addition of reverse transcriptase inhibitors, is crucial to fully elucidate the actual levels of post-integration latency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An HIV-1 replication pathway utilizing reverse transcription products that fail to integrate.

Integration is a central event in the replication of retroviruses, yet ≥ 90% of HIV-1 reverse transcripts fail to integrate, resulting in accumulation of unintegrated viral DNA in cells. However, understanding what role, if any, unintegrated viral DNA plays in the natural history of HIV-1 has remained elusive. Unintegrated HIV-1 DNA is reported to possess a limited capacity for gene expression ...

متن کامل

Opposite transcriptional regulation of integrated vs unintegrated HIV genomes by the NF-κB pathway

Integration of HIV-1 linear DNA into host chromatin is required for high levels of viral expression, and constitutes a key therapeutic target. Unintegrated viral DNA (uDNA) can support only limited transcription but may contribute to viral propagation, persistence and/or treatment escape under specific situations. The molecular mechanisms involved in the differential expression of HIV uDNA vs i...

متن کامل

Human Immunodeficiency Virus (HIV)-1 Integration Sites in Viral Latency

The persistence of human immunodeficiency virus type 1 (HIV-1) in latent reservoirs is a major barrier to HIV cure. Reservoir establishment depends on low viral expression that may be related to provirus integration sites (IS). In vitro, in cell lines and primary T cells, latency is associated with specific IS through reduced viral expression mediated by transcriptional interference by host cel...

متن کامل

Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants.

The circumstances under which unintegrated lentivirus DNA can persist and be a functional template for transcription and protein expression are not clear. We constructed and validated the first class I (nonpleiotropic) integrase (IN) mutants for a non-human lentivirus (feline immunodeficiency virus [FIV]) and analyzed both these and known class I human immunodeficiency virus type 1 IN mutants. ...

متن کامل

In vitro Delivery of HIV-1 Nef Antigen by Histidine-rich nona-arginine and Latarcin 1 peptide

Introduction: The Nef accessory protein is an attractive antigenic candidate in the development of HIV-1 DNA- or protein-based vaccines. The most crucial disadvantage of DNA and protein-based vaccines is their low immunogenicity, which can be improved by cell-penetrating peptides (CPPs) as effective carrier molecules. Methods: In this study, the HIV-1 Nef protein was generated in the Escherichi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016